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Distributed Graph Analytics
Applications: 

machine learning and network science

Credits: Sentinel Visualizer

Datasets: unstructured graphs

Credits: Wikipedia, SFL Scientific, MakeUseOf
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Need TBs of memory



Gluon [PLDI’18]

● Substrate: single address space applications on distributed, heterogeneous clusters

● Provides:
○ Partitioner
○ High-level synchronization API
○ Communication-optimizing runtime
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How to use Gluon?

● Programmers:
○ Write shared-memory applications
○ Interface with Gluon using API

● Gluon transparently handles:
○ Graph partitioning
○ Communication and synchronization
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GPU

How to use Gluon?
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○ Graph partitioning

○ Communication and synchronization



Contributions
● Novel approach to build distributed and 

heterogeneous graph analytics systems 
out of plug-and-play components

● Novel optimizations that reduce 
communication volume and time

● Plug-and-play systems built with Gluon 
outperform the state-of-the-art
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● Gluon Synchronization Approach

● Optimizing Communication

● Exploiting Structural Invariants of Partitions

● Exploiting Temporal Invariance of Partitions

● Experimental Results

Outline



Gluon Synchronization 
Approach



Vertex Programming Model
● Every node has one or more labels

○ e.g., distance in single source shortest path (SSSP)

● Apply an operator on an active node in the graph
○ e.g., relaxation operator in SSSP

● Operator: computes labels on nodes
○ Push-style: reads its label and writes to neighbors’ labels
○ Pull-style: reads neighbors’ labels and writes to its label

● Applications: breadth first search, connected component, pagerank, 
single source shortest path, betweenness centrality, k-core, etc.

push-style

pull-style

R

R

W

W

6



Partitioning
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assigned to a 
unique host
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● Each edge is 
assigned to a 
unique host

● All edges 
connect proxy 
nodes on the 
same host

● A node can have 
multiple proxies: 
one is master
proxy; rest are 
mirror proxies
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● Each edge is 
assigned to a 
unique host

● All edges 
connect proxy 
nodes on the 
same host

● A node can have 
multiple proxies: 
one is master
proxy; rest are 
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How to synchronize the proxies?
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● Distributed Shared Memory (DSM) 
protocols
o Proxies act like cached copies
o Difficult to scale out to distributed and 

heterogeneous clusters



How does Gluon synchronize the proxies?

: Master proxy

: Mirror proxy

: distance (label) from source A
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● Exploit domain knowledge
o Cached copies can be stale as long as 

they are eventually synchronized
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How does Gluon synchronize the proxies?

: Master proxy

: Mirror proxy

: distance (label) from source A
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● Exploit domain knowledge

o Cached copies can be stale as long as 

they are eventually synchronized

● Use all-reduce:

o Reduce from mirror proxies to master 

proxy

o Broadcast from master proxy to mirror 

proxies
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When to synchronize proxies?

Host h2Host h1

Distribution-agnostic 
computation on local 
proxies

Synchronize proxies 
with each other

Distribution-agnostic 
computation on local 
proxies

Synchronize proxies 
with each other

Read partition-1 of 
the graph

Read partition-2 of 
the graph
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Gluon Distributed Execution Model

Host h2Host h1

Galois/Ligra on 
multicore CPU or
IrGL/CUDA on GPU

Gluon comm. 
runtime

Galois/Ligra on 
multicore CPU or
IrGL/CUDA on GPU

Gluon partitioner Gluon partitioner

Gluon comm. 
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MPI
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Galois [SoSP’13]
Ligra [PPoPP’13]
IrGL [OOPSLA’16]
LCI [IPDPS’18]



Gluon Synchronization API
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● Application-specific:
o What: Label to synchronize
o When: Point of synchronization
o How: Reduction operator to use

● Platform-specific:
o Access functions for labels (specific to data layout)



Exploiting Structural 
Invariants to Optimize 
Communication
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Structural invariants in the partitioning

: Master proxy

: Mirror proxy

: distance (label) from source A

13

A

B

F

I

E

C

D

G

J

H

C

G

J

B

F

Host h1 Host h2

0

8
8

1
Structural invariants in this partitioning:

● Mirror proxies do not have outgoing 

edges

As a consequence, for sssp:

● Mirror proxies do not read their 
distance label

● Broadcast from master proxy to 
mirror proxies is not required



Graph as an adjacency matrix

Graph view Adjacency matrix view
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Partitioning an adjacency matrix

Graph view Adjacency matrix view
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Partitioning strategies with 4 partitions

Unconstrained
Vertex Cut

(UVC)

Incoming 
Edge Cut

(IEC)

Outgoing 
Edge Cut
(OEC)

Cartesian 
Vertex Cut

(CVC)
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• Algorithm invariant in SSSP:

Partitioning: strategies, constraints, invariants
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Strategy Constraints and Invariants SSSP: Invariants SSSP: Sync
Outgoing
Edge-Cut (OEC)

Mirrors: no outgoing edges Mirrors: label not read Reduce

Incoming
Edge-Cut (IEC)

Mirrors: no incoming edges Mirrors: label not written Broadcast

Cartesian
Vertex-Cut (CVC)

Mirrors: either no outgoing edges 
or no incoming edges

Mirrors: either label not 
read or label not written

Reduce-partial & 
Broadcast-partial

Unconstrained 
Vertex-Cut (UVC)

None None Reduce & 
Broadcast

R W



Exploiting Temporal 
Invariance to Optimize 
Communication
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Bulk-communication
● Proxies of millions of nodes need to be 

synchronized in a round
o Not every node is updated in every round

● Address spaces (local-IDs) of different 
hosts are different

● Existing systems: use address translation 
and communicate global-IDs along with 
updated values
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Bulk-communication in existing systems
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Bulk-communication in Gluon
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● Elides address translation during 
communication in each round

● Exploits temporal invariance in 
partitioning
o Mirrors and masters are static
o e.g., only labels of C, G, and J can be 

reduced from h1 to h2

● Memoize address translation after 
partitioning



Optimization I: memoization of address translation
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Communication after memoization
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Host h1 Host h2
65

: Local IDs

427 5

● Memoization establishes the order of 
local-IDs shared between hosts

● Send and receive labels in each round in 
the same order

● Only some labels updated in a round:
o Send simple encoding that captures which 

of the local-IDs in the order were updated
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Optimization II: encoding of updated local-IDs
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Experimental Results



● Systems:
○ D-Ligra (Gluon + Ligra)
○ D-Galois (Gluon + Galois)
○ D-IrGL (Gluon + IrGL)
○ Gemini (state-of-the-art) [OSDI’16]

Experimental setup
● Benchmarks:

○ Breadth first search (bfs)
○ Connected components (cc)
○ Pagerank (pr)
○ Single source shortest path (sssp)
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Inputs rmat28 kron30 clueweb12 wdc12
|V| 268M 1073M 978M 3,563M

|E| 4B 11B 42B 129B

|E|/|V| 16 16 44 36

Size (CSR) 35GB 136GB 325GB 986GB

Clusters Stampede (CPU) Bridges (GPU)
Max. hosts 256 64

Machine Intel Xeon Phi KNL 4 NVIDIA Tesla K80s

Each host 272 threads of KNL 1 Tesla K80

Memory 96GB DDR3 12GB DDR5



Strong scaling on Stampede 
(68 cores on each host)
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D-Galois performs best and scales well



Strong scaling on Bridges
(4 GPUs share a physical node)
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D-IrGL scales well



Impact of Gluon’s communication optimizations

D-Galois on 128 hosts of Stampede: clueweb12

27

Improvement (geometric mean):
Communication volume: 2x Execution time: 2.6x



Fastest execution time (sec) using 
best-performing number of hosts/GPUs
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D-Galois and D-IrGL are faster than Gemini by factors of 3.9x and 4.9x



Subsequent work using Gluon

● [EuroPar’18] Abelian compiler: 
shared-memory Galois apps ---> distributed, heterogeneous (D-Galois + D-IrGL) apps

● [VLDB’18] Partitioning Policies: Cartesian Vertex Cut performs best at scale

● [PPoPP’19] Min-Rounds Betweenness Centrality (MRBC) algorithm

● [ASPLOS’19] Phoenix: fault-tolerance without overhead during fault-free execution

● [IPDPS’19] Fast Customizable Streaming Edge Partitioner (CuSP)
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Conclusions

● Novel approach to build distributed, heterogeneous graph analytics systems: scales 
out to 256 multicore-CPUs and 64 GPUs

● Novel communication optimizations: improve execution time by 2.6x

● Gluon, D-Galois, and D-IrGL: publicly available in Galois v4.0

http://iss.ices.utexas.edu/?p=projects/galois

● Use Gluon to scale out your shared-memory graph analytical applications
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http://iss.ices.utexas.edu/?p=projects/galois


Backup slides



Graph construction time (sec)
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Execution time (sec) on a single node of Stampede
(“-” means out-of-memory)
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Execution time (sec) on a single node of Bridges
with 4 K80 GPUs (“-” means out-of-memory).
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Fastest execution time (sec) of all systems using 
best-performing number of hosts/GPUs

34

D-Galois and D-IrGL are faster than Gemini by factors of 3.9x and 4.9x on the average.



Impact of Gluon’s communication optimizations

D-Galois on 128 hosts of Stampede: clueweb12 with CVC

35

Improvement (geometric mean):
● Communication volume: 2x
● Execution time: 2.6x



Impact of Gluon’s communication optimizations

D-Galois on 128 hosts of Stampede: 
clueweb12 with CVC
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Improvement (geometric mean):
● Communication volume: 2x
● Execution time: 2.6x

Bench
mark

Communication 
volume (GB)

Total execution time 
(sec)

UNOPT OPT UNOPT OPT

bfs 19 11 34.7 17.9

cc 100 38 20.5 13.5

pr 405 214 146.5 111.8

sssp 114 60 51.2 28.8



Fastest execution time (sec) of all systems using 
best-performing number of hosts/GPUs
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D-Galois and D-IrGL are faster than Gemini by factors of 3.9x and 4.9x

Bench
mark

D-Galois Gemini D-IrGL

bfs 16.7 (256) 44.4 (16) 10.8 (64)

cc 8.1 (256) 30.2 (16) 23.8 (64)

pr 67.0 (256) 257.9 (32) 215.1 (64)

sssp 28.8 (128) 128.3 (32) 15.8 (64)

clueweb12
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Bench
mark

D-Ligra D-Galois Gemini

bfs 1995 381 X

cc 177 75 X

pr 663 158 X

sssp 2986 575 X

wdc12

D-Galois performs best

Fastest execution time (sec) of all systems using 
best-performing number of hosts



Strong scaling on Stampede 
(68 cores on each host)
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D-Galois performs best and scales well.



Motivation
● Distributed CPU-only graph analytics:

○ Gemini [OSDI’16], PowerGraph [OSDI’12], ...

○ No way to reuse infrastructure, such as to leverage GPUs

● Decouple communication from computation

● Enable communication optimization at runtime
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